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Abstract 
A new molecular replacement (MR) strategy is 
introduced which features a continuous transform and 
a genetic algorithm (GA) for search optimization. This 
strategy uses a GA to simultaneously search the 
rotational and translational parameters of a test model 
while maximizing the correlation coefficient between 
the observed and calculated diffraction data. This has 
distinct advantages over conventional MR strategies 
which require a cross-rotation signal. An important 
feature of this method is its capability to simultaneously 
search the overall rotation/translation of the test model 
in the unit cell while refining the relative orientation/ 
position of internal subdomains. This identifies mol- 
ecular replacement solutions which would otherwise be 
completely missed using just a static model, and greatly 
improve the signal-to-noise contrast. 

1. Introduction 
The method of molecular replacement (MR) has 
become a routine tool for determining crystal structures 
of macromolecules using models that are closely related 
in structure. The theory of MR and its application to 
protein crystallography has been described in numerous 
reviews (see Rossmann, 1990). As an alternative to 
traditional isomorphous replacement, the molecular 
replacement method is an elegant computational 
approach for establishing a preliminary set of phases. 
The methodology rests on the understanding that 
structurally similar molecules have closely related 
molecular transforms and that differences in transforms 
primarily reflect changes in the orientation and positions 
of the molecules. Over the years, algorithms for 
determining the transformations that relate the unknown 
and known atomic models have evolved both in terms of 
speed and accuracy. However, as observed by Brtinger 
(1994), approximations made to increase computational 
efficiency often come at a cost of diminished accuracy. 

Conventional molecular replacement methods are, 
for the most part, based on the properties of the 
Patterson function. The information that defines the 
orientation and position of a known structure in an 
unknown cell is embedded in the intensities of the 
diffraction data and can be extracted by superposition of 

the Patterson functions. The Patterson function, or IFI 2 
synthesis, when calculated using the crystal structure 
amplitudes, produces a three-dimensional distribution 
of vectors. There are two types of vectors: self and 
cross. Self vectors are produced between atoms within a 
molecule, and cross vectors occur between the atoms of 
symmetry-related molecules. A Patterson function, 
calculated from a known atomic model of a related 
molecule, will produce a constellation of self vectors 
that are similar to those of the unknown structure in the 
crystal, but rotated by some as yet undefined set of 
angles. To ascertain these angles, a rotation function is 
used to explore the correlation between the observed 
and model Patterson functions as a function of the 
rotation space (Rossmann & Blow, 1962; Huber, 1985; 
Nordman, 1971; Crowther, 1972; Navaza, 1994). 

Determining the orientation of a search model with 
respect to the observed diffraction data can be 
accomplished in real space (Huber, 1985), reciprocal 
space (Rossmann & Blow, 1962), or direct space 
(Briinger, 1994). These three methods are all useful 
tools and are formally equivalent, but differ in their 
computational accuracy and efficiency. The real- and 
reciprocal-space formulations rely entirely on the 
Patterson function. Both methods compare the observed 
Patterson, Pc, with that calculated from a model, Pm" 
The superposition of the two Patterson functions is 
computed for different orientations of Pro, 

Rot(I2, r) -- f Pc(V)Pm(~2, v) dv, (1) 
U(r) 

and the similarity of the two Patterson functions is 
assessed as a function of a rotation matrix, $2, which is 
specified by a set of angles that samples the angular 
space. The variables r and U(r) are the radius and the 
volume of integration, respectively. To obtain the best 
signal-to-noise ratio, a value of r is chosen that 
maximizes the number of self vectors while minimizing 
the number of cross vectors in the volume of 
integration. 

A direct rotation function, introduced by Briinger 
(1990), differs from the conventional real- and recipro- 
cal-space methods. Instead of rotating the Patterson of 
the search model Pro, the orientation of the model itself 
is changed according to x~ = ~x  i. Structure amplitudes 
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are calculated and correlated with the observed diffrac- 
tion data. This technique, referred to as 'Patterson 
correlation', is a measure of the phase accuracy for a 
partial model. Briinger (1990) showed this Patterson 
correlation to be a better discriminator for determining 
the rotational parameters that specify 12 than either the 
real or reciprocal rotation functions. However, as 
currently implemented, the Patterson correlation is 
orders of magnitude slower to compute than the other 
rotation functions. 

In a similar fashion, the position of a correctly 
oriented model is achieved using a translation function 
(Crowther & Blow, 1967). A translational search is 
conceptually analogous to the rotation function. The 
position of the correctly oriented search model is 
identified by maximizing the agreement between the 
observed and calculated cross Patterson vectors. 
Crowther & Blow (1967) showed that the translation 
component can be determined by correlating an 
observed Patterson function and a Patterson function 
calculated from a correctly oriented model. 

T(t) = f ec(1.~)em(12, t) dv, (2) 
U 

where t and v are the translational shift and variable of 
integration. In most instances, the solution of a crystal 
structure by molecular replacement methods is not 
straightforward. Failure to unambiguously determine 
the relationship between the known and unknown 
structures results from differences between the search 
object and the unknown molecule. In such instances, the 
distribution of self vectors within the Patterson function 
of the search object is inconsistent with that from the 
crystal. Difficulties also arise when the unknown 
molecule is irregularly shaped or when molecules are 
densely packed in the crystal. In these cases, the self 
and cross vectors cannot be conveniently segregated and 
the interpretation of both rotation and translation 
functions is difficult. As a consequence, the strategy 
adopted by many molecular replacement packages, such 
as AMoRe (Navaza, 1994) and X-PLOR (Briinger, 
1992), is to analyze several potential rotational and 
translational maxima in an attempt to identify the 
correct solution. 

Although rotation and translation functions are useful 
tools for determining the orientation and position of the 
unknown molecule, the correct solution is usually 
confirmed by calculating a correlation coefficient or a 
residual between the observed and calculated diffraction 
data. In this paper, a method is introduced for solving 
homologous structures without partitioning the rotation 
and translation search. Searching a multi-dimensional 
space is no longer beyond the available computational 
resources. Fujinaga & Read (1987) demonstrated that it 
was possible, in principle, to perform a six-dimensional 
search to find the orientation and position of the 
unknown molecule. However, even a full rigid-body 

search may fail to provide a molecular replacement 
solution when there are differences between the search 
molecule and that in the unknown structure. 

The molecular replacement method presented here 
describes a strategy for performing higher dimensional 
searches with current computational resources. This 
molecular replacement approach was developed to 
simultaneously search the rotational and translational 
degrees of freedom and, in doing so, is a departure from 
the classical protocol. Rather than dividing the problem 
into a rotation and a translation search, the orientation 
and position of the object are determined concurrently. 
Accomplishing this task requires an efficient method for 
computing structure amplitudes and an 'intelligent' 
algorithm for sampling a multi-dimensional space. The 
continuous transform is used to efficiently compute the 
structure amplitudes and a genetic algorithm is used to 
reduce the search space. While neither technique is 
new, combining the two (GA_MR) provides a very 
powerful tool which has distinct advantages over 
conventional molecular replacement strategies and 
also requires very little user intervention. 

2. Methods 

2.1. The continuous transform 

To calculate efficiently structure amplitudes from an 
atomic model in a large number of different conforma- 
tions requires a continuous Fourier transform (Lattmann 
& Love, 1970). The 'continuous transform' is function- 
ally defined as a Fourier transform of a known molecule 
which has been sampled on a relatively fine grid in 
reciprocal space. Once the continuous transform is 
calculated in some reference frame, structure ampli- 
tudes can be quickly computed for any orientation of the 
object by a transformation of the reciprocal lattice 
indices. This is in contrast to the trigonometric or FFT 
(Fast Fourier Transform) techniques that must recom- 
pute the molecular transform for each orientation of the 
search molecule. 

The structure-factor equation describes the relation- 
ship between atomic positions and the amplitude of a 
diffraction vector. Structure factors can be calculated 
for a molecule in any orientation given a set of atomic 
coordinates, x i, and the atomic scattering f/, 

h Fcalc(X,f , R, t) 2., f exp[-2rrih --- • ( O X t a l  R O X t a l  X i -11- t)], 
i= l  

(3) 
where a rotation matrix, R, is applied to the model 
coordinates (fractional), xi and s is the number of atomic 
scatterers. The matrix, O X t a l  , is required to orthogona- 
lize the model coordinates and the vector, t, is the 
translation of the model in the unit cell. The use of (3), 
however, requires that the summation must be repeated 
for every conformation of the molecule. The calculated 
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structure amplitudes can also be described in terms of 
its rotational and translational components. 

Fhalc(X,f , R , t )  h = Frot(X, f ,  R)exp(-2zrih.  t), 

where 

h 
Frot(X, f ,  R)  ~_~ f. exp[-2rcih = " (OxtatROxtal  xi)], (4) 

i=l 

where the exponential term accounts for the translation 
of the molecule with respect to the cell axes. 

Once an initial set of structure amplitudes have been 
calculated from a model in some arbitrary orientation, a 
new set of amplitudes can be computed for any rotation 
by applying the rotation to the reciprocal lattice indices 
rather than the atomic coordinates. 

h Frot(R, x , f )  = Fho'rg(X,f) (5) 

where h ' =  Rrh .  The amplitude of Fhot is obtained by 
evaluating the original transform at the index h where 
R r is the transpose of the rotation matrix. Applying a 
rotation to a set of integer indices, however, usually 
results in fractional values that do not correspond to grid 
points where the transform has been sampled. There- 
fore, to accurately evaluate the molecular scattering at 
these non-integral points the 'continuous' transform 
must be used. In practice the continuous transform, Fret, 
is calculated by positioning the model at the origin and 
computing the structure amplitudes in an artificially 
large unit cell. From the continuous transform, the 
value of Fhot can be quickly evaluated by rotating the 
reciprocal lattice indices and using a linear interpolation 
in reciprocal space. 

where 

h 
Frot(X, f  , R ) = F~nt( f , x ), 

h '  (Omt)T T -1 T T = R (OXtal) (Rsym) hxtal , (6) 

where Omt and OXtal a r e  the appropriate orthogonaliza- 
tion matrices for the continuous transform and the 
crystal system, respectively• The m a t r i x  Rsy m is the 
rotational component of the crystallographic symmetry 
operator. The calculated structure amplitude in the 
crystallographic frame can be computed for a given 
rotation and translation by, 

h Fcalc(f, x, R, t, Rsy m, tsym) - -  

Nsr, n 
F ~ t ( f , x , R ,  i i • (Rsymt  d-- tSym)] Rsym) exp[-2~rih i 

i=1 

(7) 

where tSy m is the translational component of the 
crystallographic operator and NSy m is the number of 
crystallographic symmetry operators. 

2.2.  The genet ic  a lgori thm 

An exhaustive sampling of rotational and transla- 
tional space is computationally unrealistic given current 
computer resources even when using a continuous 
transform. A six-parameter search with modest sam- 
piing can require approximately 109 evaluations• 
Therefore, to perform a large multi-dimensional search 
requires an efficient search protocol. The genetic 
algorithms (GA's) are ideal optimization tools to search 
for the global minimum or maximum of functions 
spanning large non-linear spaces (Goldberg, 1989; 
Davis, 1991). Genetic algorithms belong to a family 
of stochastic optimization strategies which include 
Monte Carlo (Metropolis, Rosenbluth, Rosenbluth, 
Teller & Teller, 1993) and simulated annealing 
(Kirkpatrick, Gelatt & Verchi, 1983). GA's provide a 
useful alternative to these other methods because they 
are more robust and can explore complicated search 
landscapes efficiently. Genetic algorithms have also 
been useful tools for solving heavy-atom derivatives 
(Chang & Lewis, 1994) and also ab initio phasing of 
viral particles (Miller, Hogle & Filman, 1996)• GA's 
use Darwin's principles of natural selection to find 
optimal solutions to complex numerical problems. In 
the terminology of the genetic algorithm, a chromosome 
evolves to maximize some defined fitness criteria. 

The GA functions by mimicking nature, performing 
genetic operations such as cross over and point mutation 
which introduce variation in the population of chromo- 
somes. The variables to be optimized by the GA are 
encoded as a bit string that are grouped into a 
chromosome• These 'parent' chromosomes are evalu- 
ated for their fitness, mutagenized, mated, and their 
genetic information is passed on to a new generation of 
'children'• After several generations, a population of 
chromosomes will evolve which has a higher level of 
fitness than its ancestors. The fitness function in the 
genetic algorithm plays the same role as the environ- 
ment plays in natural evolution. Chromosomes that 
perform well on a particular task will survive and have a 
higher probability of passing their genetic material to 
the next generation. Over several generations, chromo- 
somes will emerge with high fitness which represents a 
solution to a particular problem. 

The genetic algorithm used for molecular replace- 
ment also has a Lamarckian component. Parents can 
undergo extensive modification (i. e., they are shaped by 
their environment) and pass these traits directly to the 
next generation• This is accomplished by randomly 
choosing a small number of parent chromosomes across 
the entire population and optimizing their fitness using 
gradient minimization. As implemented, less than 2% 
of the individuals in any generation are influenced by 
the environment and this optimization is performed only 
during the latter half of the GA evolution. Optimization 
is accomplished by varying each search parameter 
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(rotation and translation) by a steepest descent. The 
refined parameters are then encoded into the chromo- 
some and reintroduced into the population. As a result 
of 'doping' the gene pool, convergence to the global 
minimum can often be obtained more quickly. 

3. Methods and results 

To illustrate how a genetic algorithm, GA_MR, can be 
used to solve an unknown crystal structure, four 
different molecular replacement problems are pre- 
sented. These examples are representative of the types 
of problems frequently encountered in molecular 
replacement and are presented in order of increasing 
level of difficulty. The first example demonstrates how 
the genetic algorithm can be used to solve a single-body 
molecular replacement problem. The second example 
illustrates how a GA_MR can be used to search the 
translation of a model while performing rigid-body 
refinement on selected subdomains. The third example 
introduces additional degrees of freedom by incorporat- 
ing non-crystallographic symmetry in the search. And 
the fourth example demonstrates how the genetic 
algorithm can be used to search all of rotation and 
translational space of two molecules in the asymmetric 
unit where the structure of the unknown molecule 
deviates from the search model. In these examples, the 
variables to be varied are encoded into a chromosome 
whose viability or fitness is assessed by correlating the 
observed and calculated structure intensities, 

box with cell dimensions a = b = c - -  150A which is 
approximately four times the largest dimension of the 
molecule. The electron density, with 1 ,~, sampling, 
was back transformed to produce a complete set of P1 
structure factors. The six-dimensional search space 
that describes the rotation and three translation 
parameters was encoded into a 35-bit chromosome. 
A total of 20 bits were used to explore the entire 
rotational space that was sampled in 3 ° intervals; seven 
bits were used to define two Euler angles, 01 and 03, 
and six bits were allocated 02 . The remaining 15 bits 
of the chromosome were used to sample the transla- 
tional space in intervals of 1/32 of the asymmetric 
unit's cell edge. The population size used in the GA is 
related to the number of bits in the chromosome as 
described by Davis (1987) and was set to 500 in this 
example. The evaluation function serves multiple 
functions; it extracts the rotation and translation 
parameters encoded in the chromosome, calculates 
structure amplitudes by interpolation of the continuous 
transform (6) and assesses a fitness by correlating the 
observed and calculated structure factors for data with 
d spacings from 10 to 5 ,~. To explore systematically 
the entire search space requires over 109 evaluations. 
By using the genetic algorithm the correct solution was 
found in only 10 4 trials. The best chromosome had a 
fitness score (i.e. a correlation coefficient) of 68%. 
The performance of the GA is plotted as a function of 
generation in Fig. 1. 

Corr(Fcalc, Fob s, N) = 

N N N 
N ~  2 • 2 • Fcalc(t)F~bs(t ) _ ~ F2obs(i) ~ Fcalc(t)2 • 

i=1 i=1 i=1 (N 12}1/2 
N ~ F4bs(i)- L F2obs(i) 

i=1 
e 12} /2 N/__~ 1 Fc4al~(i) - L F~Zal~(i) 
i=1 

(8) 

3.1. Example 1. Molecular replacement of a single 
rigid body 

A genetic algorithm was used to determine the six 
parameters necessary to orient and position a rigid 
model of a homologous molecule in the unit cell of an 
unknown crystal. Crystals of 3ot-hydroxysteroid 
dehydrogenase were grown in space group C2221 
with cell dimensions of a - 5 1 . 3 ,  b - -89 .5  and 
c - 1 4 3 . 3 ~ , .  The structure was solved by molecular 
replacement with the program AMoRe (Navaza, 1994) 
using aldose reductase (PDB file 1DLA) as a search 
probe (Hoog, Pawloshi, Alzari, Penning & Lewis, 
1994). To illustrate this new methodology, this 
structure determination was repeated using the GA 
search protocol. As a first step, a continuous transform 
was computed from a polyalanine model of aldose 
reductase. The coordinates were transformed so that 
the center of mass was positioned at the origin of a P1 

3.2. Example 2. Molecular replacement of a molecule 
with flexible domains 

A frequently encountered problem for molecular 
replacement, illustrated in Fig. 2, occurs when a protein 
contains well conserved but loosely connected structural 
domains. In many instances, the individual domains are 
identical to those in the search molecule but the relative 
orientation of the domains change. When the relative 
differences are modest, the cross rotation function may 
provide a signal that describes an 'averaged' or a 
composite orientation. However, a translational search 
is more sensitive to small orientational differences and 
the correct solution is often lost in the noise. In some 
cases, a Patterson correlation (PC) protocol can correct 
these structural deviations (Briinger, 1990). When the 
conformational change is large, GA_MR provides an 
alternate approach. In this second example, a multi- 
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dimensional search was performed in which the relative 
orientation and "position of the domains were treated as 
variables, as well as the translational vector that defines 
the position of the molecules with respect to the 
crystallographic axes. 

Proteins within the Lacl family have sequence 
homology and are structurally similar to the periplasmic 
binding proteins that have two flexible domains. The 
purine repressor (PurR) is a member of this family of 
proteins. This repressor crystallized in space group 
C2221 with cell dimensions a = 175.85, b = 94.79 and 
c -  81.84A and has been solved to atomic resolution 

(Schumacher, Choi, Zalkin & Brennan, 1994). PurR is 
structurally quite similar to the periplasmic ribose- 
binding protein, however, as depicted in Fig. 2, the 
relative orientation of these domains are not completely 
conserved. Nonetheless, a cross rotation function 
calculated using a polyalanine model of the periplasmic 
binding protein (1RBP) produced a peak (4.9cr) that 
correctly oriented the model with respect to the 
crystallographic frame of the purine repressor. How- 
ever, a Crowther-Blow translation function calculated 
to identify the correct position of the search object with 
respect to the crystallographic axes failed. In fact, the 
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Fig. 1. Performance of genetic algorithm for solving 3~-hydroxysteroid dehydrogenase using an aldose reductase model. The details are 
described in the text. Shown are the average, lowest and highest functional values (correlation coefficient between F,,b~ and F~a~) as a function 
of population generation of binary chromosomes. The correct solution in this particular case is 68% found at generation 51. 
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Fig. 2. Schematic illustration of MR 
case using ribose-binding protein 
to solve PurR. (a) shows that there 
is a small subdomain movement 
which requires three small rota- 
tional and three small translational 
parameters to properly model. (b) 
shows that the orientation of the 
complete molecule (highlighted in 
green) also needs to be refined 
because there is a crude cross- 
rotation solution in this case. The 
point of rotation is indicated by 
the blue dot. (c) shows that the 
position of the molecules needs to 
be searched which requires three 
large parameters. 
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correct solution was not within the top 50 peaks and less 
than lo-. A search was repeated using the molecular 
replacement package in X-PLOR with the PC protocol 
and again the correct solution was not obvious. 

Given that conventional MR methods failed to yield a 
solution, a genetic algorithm was constructed to 
determine the relative orientations of the two domains 
within purine repressor and to position this altered 
molecule with respect to the crystallographic unit cell. 
To describe the conformation of the two subdomains 
better, the overall rotation R °, determined from the 
cross rotation function, was altered using two perturba- 
tion matrices R~ and R~. In addition to these rotational 
operators, GA_MR also determine the displacement 
vector t A, which was needed to correctly relate the 
domains. The structure amplitudes were calculated by 
summing the two transforms and their crystallographi- 
cally related mates such that, 

Nsym=4 2 h ' 
h o 

Fcalc(R , R ~ , R ~ , x , t , f ) =  ~ ~ Fmt(X,f) 
j = l  i=1  

where 

× exp(-27rih • tij), 

t T o .4 T - 1  T j T 
h i - - - - ( O m t  ) (R R i ) (OXtal) (Rsym) hxtal, 

and 

• - I  ti. j = ( l~symOxta tg°R '~Ox ta , )  • (t ° + ti ~ + t) +/JSym,  

and 

t~ a = 0 .  (9) 

The displacement vector, t~, is equal to zero because 
it is incorporated into the monomer's translation, t. The 

60 

pertubation matrices explored a limited angular space 
defined by the rotational parameters (Ate, ,6/3, ,6V) and 
the angles were allowed to deviated +20 ° about the 
observed conformation in increments of 2.5 ° . Three 
translational parameters (Ax, `6y, Az) were used to 
adjust the relative positions, t ~ of the subdomains i , .  

sampling a space that was + 5 A  about the known 
displacements, ( ,  in intervals of 0.625 ,~,. The sampling 
of these nine perturbation variables (six small rotations 
and three small translations for 36 bits), along with 
three overall translation parameters (for 17 bits) 
required a chromosome of 53 bits. A systematic search 
of this multi-dimensional pace would have required 253 
evaluations. The genetic algorithm, however, con- 
verged in approximately 7 × 104 trials producing a 
chromosome with a fitness or correlation of 51%. The 
optimization was terminated when the number of 
generations exceeded a user specified value. The 
performance of the genetic algorithm is shown as a 
function of generation in Fig. 3. 

3.3. Example 3. MR with non-crystallographic symm- 
etry and flexible domains 

Many proteins crystallize with more than one 
molecule in the asymmetric unit. Often the transforma- 
tion between these molecules can be determined from a 
self rotation function. This information can be readily 
incorporated in a GA search by modifying the equation 
that relates the crystallographic indices to the indices of 
the continuous transform, 

h' T T - 1  T =(Ore, ) (NR) (Oxt~t) hxtal, (10) 

where N is a non-crystallographic symmetry operator. 
This third example describes how a genetic algorithm 
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Fig. 3. Performance of genetic algorithm for solving the purine repressor complexed to DNA with ribose-binding protein model. The details are 
described in the text. Shown are the average, lowest and highest functional values (correlation coefficient between Fob s and Fca~c) as a function 
of population generation of binary chromosomes. The correct solution in this particular case is 52 % found at generation 55. 
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was developed to solve the structure of the tetrameric 
lac repressor, another member of the Lacl family, using 
PurR as a search model. 

The uncomplexed form of the lactose repressor 
(LacR) is a homotetramer that crystallized in space 
group C2 with unit-cell dimensions a = 160.3, 
b = 73.3, c = 147.8A, and /3 = 120.3 °. A self-rota- 
tion function calculated with data between 10 and 4 A 
produced two prominent peaks, approximately half 
the value of the origin. These peaks were observed on 
the x =  180 ° section with polar angles ~0=60,  
~p = 90 ° and q9 = 150, ~p - 90 ° suggesting there is a 
non-crystallographic twofold axis in the xz plane. In 
addition, satellite peaks at 99 -  130, 7t = 100 ° and 
~0 = 170, 7 t -  80 ° were observed flanking the 
99 = 150, 7t = 90 ° operator on this section. A cross 
rotation function, calculated using the dimeric purine 
repressor as a model, produced two large peaks; the 
primary peak was 70- and second highest peak 50-. 
The rotation function correctly oriented the PurR 
dimer such that the twofold axes was coincident with 
the satellite peaks observed in the self rotation search. 
It was, therefore, completely plausible that the large 
peak observed on the tc = 180 ° section related the 
dimers of the tetramer. 

Several attempts were made to translationally 
position the dimers in the Lac repressor cell without 
success. As in example 2, it was likely that the 
orientation of the domains within a monomer was 
different. A multi-dimensional GA was constructed to 
(i) explore small rotational and translational pertuba- 
tions of the domains, (ii) to refine the non-crystal- 
lographic symmetry transformations and (iii) to 
position both dimers in the asymmetric unit (Fig 4). 
In this example, eight objects must be correctly placed 
in the asymmetric unit. Therefore, in order calculate a 
set of structure amplitudes, the scattering for eight 
transforms and their crystallographic mates need to be 
summed. 

Nsym =4 2 2 2 p h  '4,k,li h Fcalc(R,x,t,f) = ~ 2 2 ~--mt (x,f) 
t=l k=l a=l i=1 

× exp(-2rr ih  .ti,j,k,l), 

where 

t O T o A T -1 T 1 T 
hi,j,k,l = ( m t )  (NkMjR Ri ) (OXtal) (Rsym) hxtal, 

and 

ti,j,k, 1 - -  
1 -1 

( R s y m O x t a l N k M j R ° R ~  Oxtat) • (t ° -t- t?  -t- tk) -q- t/Sym . 

(11) 

In order to obtain a more accurate representation of 
the LacR molecule, each monomer had to be divided 
into two domains and allowed to move in an 
independent fashion like in example 2. This is shown 
as the right most summation (~--~i) in (11). A crude 
transformation that describes the orientation of the 
dimer model was obtained from cross rotation function, 
R °, and the initial displacement of these domains is t °. 
The matrices, R~ and R~, and the vectors, t] a and t~, 
described the relative changes between these two 
domains. 

The orientation and position of the LacR monomers 
were interdependent and related by two levels of non- 
crystallographic symmetry which are expressed in (11) 
as summations (~--~i and ~--~k)- To create the dimer, these 
structural domains must be transformed by the non- 
crystallographic symmetry operator, Mj, where 
j = 1, 2. An initial estimate for this symmetry operator 
was obtained from self and cross rotation function using 
the PurR dimer model. To account for deviations in the 
direction of the twofold axis from that observed in the 
rotation function, the angles the define the direction of 
the twofold were allowed to explore a limited angular 
space. Once the dimer was constructed, a tetramer was 
created by applying a second operation, N k, which also 

3 Small Rot 
3 Small Trans 

3 Small Rot 
3 Small Trans 

Domain Refinement 

(a) 

3 Small Rot 

Dimer Rotation 
Refinement 

(b) 

Z 

X 

5 Large Trans 

Complete Two-Body 
Translation Search 

(c) 

Fig. 4. Schematic illustration of MR 
case using purine-DNA (PurR) 
core to solve the lactose repressor 
(LacR). (a) shows that there is 
subdomain movement that is con- 
strained by a non-crystallographic 
twofold axis. This requires 12 
parameters to be properly mod- 
eled. (b) shows that the overall 
orientation of the dimer needs to 
be refined because there is a cross- 
rotation solution in this case. The 
blue dot indicates the point of 
rotation. (c) shows that the trans- 
lation of both dimers needs to be 
searched in the asymmetric unit. 
The orientation of the second 
dimer is related by the non- 
crystallographic axis (shown in 
purple) which is also refined. 
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Table 1. Parameters for  the LacR molecular replacement cases 

The rotational and translational parameters and their respective sampling ranges are shown. 

Subdomain 

N-terminal' 
domain 
(Monomer) 
C-terminal 
domain 
(Monomer) 

Dimer 1 

Dimer 2 

Rotation 
Rotation sampling Translation Sampling 
range (°) (°) range (A) (A) 

[-20,20] 2 [-5,5]  0.2 

Number of 
parameters 

6 

[-20,201 2 [-5,5]  0.2 6 

[-10,10] 2 [0.0,0.5] 0.25 
(Fractional) 

[-2.5,2.5] 0.25 [0.0,1.0] 0.25 
(Non-crystallographic) 

had three degrees of freedom to describe deviations in 
the twofold axis that relate the dimers. 

Thus, in total, the search space for this particular 
problem had 24 degrees of freedom. The conformation 
of each domain was allowed three rotations and three 
translations. In addition, three degrees of freedom were 
allocated to M~ to account for deviations in the direction 
of the twofold axis from that observed in the rotation 
function. The second NCS operator, N k, also had three 
degrees of freedom to describe the direction of the 
twofold axis that relates the dimers. In addition, five 
degrees of freedom are needed to position the two 
dimers in the crystallographic C2 cell. These variables 
were encoded in a 71 bit chromosome. Since the 
conformation of the domains was allowed to change, as 
in example 2, two continuous transforms were calcu- 
lated using a polyalanine model of PurR. The range of 
parameter values are listed in Table 1 and the 
performance of the genetic algorithm is shown in 

Fig. 5. A chromosome that encoded all of these 
parameters evolved in approximately 2.0 x 106 trials 
and had a fitness or correlation of 45 %. By comparison, 
the next highest correlation for a chromosome at the end 
of the experiment was 30%. Inspection of the properly 
positioned tetramer in the unit cell revealed good 
packing. Moreover, when this polyalanine model was 
refined with X-PLOR, imposing strict crystallographic 
constraints, the residual dropped to below 30% and 
phases calculated from this model were sufficient for 
locating heavy-atom positions in isomorphous and 
anomalous difference Fourier transforms (Lewis et 
al., 1996). 

3.4. Example 4. MR of a molecule with flexible domains 
and no cross rotation signal. 

In the first three examples the conformational search 
space could be reduced by using information about the 

50 

tJ 35 f 
- 30 
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-5 
Generations 

Average functional 
value 

Lowest functional 
value 

Highest functional 
value 

Fig. 5. Performance of genetic algorithm for solving the Lac repressor using purine repressor-DNA core model. The details are described in the 
text. Shown are the average, lowest and highest functional values (correlation coefficient between Fob s and Fca]c) as a function of population 
generation of binary chromosomes. The correct solution in this particular case is 45 % found at generation 52. 
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orientation of the molecule from a conventional rotation 
function. Without the benefit of initial cross rotation 
signal, traditional molecular replacement techniques 
usually will fail. These difficult molecular replacement 
problems can be solved, in some instances, using the 
genetic algorithm. As an example, a molecular 
replacement solution of PurR could be found using the 
ribose binding protein as the search model. While the 
number of variables needed to solve this problem is less 
than in example 3, the actual search space that was 
explored is larger. 

The core of PurR-apo crystallized in space group P21 
with unit-cell dimensions a - - 3 8 . 0 4 ,  b =  125.26, 
c =  61.29A, /3 = 100.7 ° and solved to atomic 
resolution (Schumacher, Choi, Lu, Zalkin & Brennan, 
1995). Unlike example 2, this crystal formed has a 
dimer in the asymmetric unit. A self rotation function 
calculated using data between 10 and 4 A  clearly 
showed a large peak on the x = 180 ° section, indicating 
a twofold rotation relates the monomer in the 
asymmetric unit. A cross rotation function ( A M o R e ,  

Navaza, 1994), calculated using RBP as the search 
model, however was unsuccessful and the correct 
solution was not observed in the top 100 peaks. RBP 
is not a good model of PurR-Apo and the structures 
deviate significantly. Indeed, it was later found that the 
relationship of the domains had significant deviations. 
Analogous to example 2, a perturbation matrix and 
vector were required to orient and position the two 
subdomains. Solving this particular problem required 
14 variables. Although the number of variables needed 
to solve this problem was less than half the number 
required in example three, the search space was actually 
larger. The entire rotational space had to be explored 
since there was no prior knowledge of the orientation of 
the molecule from a rotation function. 

In this example, a GA was constructed to (i) sample 
the parameters that describe the relationship of the 
subdomains, (ii) perform a complete rotational search 
for each domain, (iii) orientation of the second molecule 
in the asymmetric unit was generated from the self 
rotation function, and (iv) to position of both monomers 
in the symmetric unit (Fig. 6). The total search space 
was encoded in a 74 bit chromosome which, if 
systematically sampled, would require 2 TM 

(1.88 x 1022) evaluations. The results of this search as 
a function of generation is shown in Fig. 7. In 
approximately 2.5 × 10 6 trials a chromosome evolved 
with a correlation coefficient of approximately 50 % that 
was consistent with the correct solution (Schumacher et 

al. , 1995). 

4. Conclusions 

Traditional molecular replacement methods have been 
and will continue to be useful for solving crystal 
structures. However, when these methods fail, a more 
powerful approach is needed. For homologous struc- 
tures, the cross rotation functions are robust and 
provide the relationship between the known and 
unknown molecules. However, when there are struc- 
tural differences between the known model and the 
unknown crystal structure, a large number of cross 
rotation peaks will need to be examined to identify the 
correct solution. In our experience, the translation 
function is even less forgiving and creates the bottleneck 
in these difficult structure determinations. 

The molecular replacement method described here 
sidesteps many of these problems by simultaneously 
searching for the rotational and translational para- 
meters. The only disadvantage of this method is that it is 
computationally more demanding. Two features were 

(a) (b) 

3 Large Rot 

Complete Rotation 

Y 

3 Small Rot 
3 Small Trans 

Domain Refinement 

5 Large Trans 

Two Body Translation 

(c) 

Fig. 6. Schematic illustration of MR 
case using the ribose-binding pro- 
tein (RBP) to solve the apo form 
of the purine repressor (PurR- 
apo). (a) shows that there is 
large subdomain movement 
which requires six parameters to 
properly model. (b) shows that the 
orientation of the molecule needs 
to be searched. There is no cross- 
rotation signal in this particular 
case. (c) shows that a two-body 
translation search is required to 
properly position the molecules in 
the asymmetric unit. The orienta- 
tion of the second molecule is 
related by the non-crystallo- 
graphic operator from self-rota- 
tion analysis. 
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employed to make this structure solving method more 
practical.  First,  a genetic algori thm was used to 
efficiently explore this complicated search landscape. 
Although a single G A _ M R  run may not guarantee the 
max imum correlation coefficient, multiple runs can be 
executed in parallel to increase the probabili ty of  
achieving the 'best '  molecular  replacement solution. A 
continuous t ransform was also used to greatly increase 
the efficiency of  the model structure-factor calculations. 
In example 1, for instance, the correct  molecular  
replacement solution was found with an average time 
per GA run of  15min on an SGI R4000 Indigo. 
Although the interpolation of  the rotational component  
of  the scattering is fast, the iterative computation of  
potentially thousands of  possible conformations for 
more difficult molecular  replacement cases (examples 
2-4)  can be more expensive. Upon completion of  the 
examples  presented here, it became obvious that the 
search procedure would be more efficient if a subset of  
the data were used in the calculations. As a test, the first 
example was repeated using different fractions of  
randomly selected data between 15 and 4~, .  Using 
only 25% of the observed reflections decreased the 
computational time by almost a factor of  four while 
producing the same results. 

The strength of  genetic algori thms in molecular  
replacement is its ability to simultaneously refine the 
orientation and position of  molecular  f ragments  or 
domains while searching the entire translation space. A 
variety of  different fitness functions can be used to 
accomplish this task. For example,  an evaluation 
function was constructed to maximize the peak height 
in a difference Fourier  (from isomorphous differences 
of  anomalous data) using phases from potential 
molecular  replacement solutions generated by the GA. 

This can be very useful if the positions of  the heavy 
atoms are known. 

Difficult molecular  replacement cases require robust 
and flexible search tools. The methods presented here 
are not intended to replace other molecular  
replacement methodologies but rather to augment  
these techniques and provide a simple way to 
incorporate known information into the search 
procedure.  

It has been shown that globular proteins are organized 
in an hierarchical fashion with well defined molecular  
volumes (Nichols,  Rose & Ten Eyck,  1995). Proteins 
are created by structural domains which can be 
decomposed into subdomains,  and so forth. It is, 
therefore,  reasonable to represent any search object in 
molecular  replacement as a collection of  small well 
packed units. A continuous t ransform of  each of  these 
smaller units can be calculated and allowed a limited 
degree of  flexibility. Clearly as the number  of  trans- 
forms used to represent the object increases so do the 
computational costs. The genetic algori thm is, however ,  
a beautifully parallel process that is ideally suited for 
distributed processing which can be achieved using 
Parallel Virtual Machine (PVM) software (Sunderan,  
Geist,  Dongano & Manchek,  1994). 
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funded by a National Institutes of  Health grant 
GM-44617 and an A r m y  Research Office grant 
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Health Molecular  Biophysics Training Grant  
2-T32-GM082745.  
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Fig. 7. Performance of genetic algorithm for solving the purine repressor (apo form) with ribose-binding protein model. The details are 

described in the text. Shown are the average, lowest and highest functional values (correlation coefficient between Fob s and Fcalc) as a function 
of population generation of binary chromosomes. The correct solution in this particular case is 51% found at generation 82. 
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